ND-Tree: a Fast Online Algorithm for Updating the Pareto Archive

... i.e. return to Algorithms and Data structures

Andrzej Jaszkiewicz, Thibaut Lust
"minimize" \(z_1 = f_1(x) \)

...

"minimize" \(z_J = f_J(x) \)

s.t. \(x \in D \)
Dominance relation

- Dominated
- Non-dominated
- Dominating
- Non-dominating

Diagram illustrating the relationship between dominated and non-dominated points.
(Approximation of) Pareto front
Definition 1. Pareto dominance relation: we say that a vector $u = (u_1, \ldots, u_p)$ dominates a vector $v = (v_1, \ldots, v_p)$ if, and only if, $u_k \leq v_k \forall k \in \{1, \ldots, p\} \land \exists k \in \{1, \ldots, p\} : u_k < v_k$. We denote this relation by $u \prec v$.

Definition 6. Coverage relation: we say that a point u covers a point v if $u \prec v$ or $u = v$. We denote this relation by $u \preceq v$. We will also use the coverage relation w.r.t. solutions as well, i.e. $x \preceq x^* \iff y(x) \leq y(x^*)$.
initialize empty Pareto archive

do

 generate a new solution \(x \)
 update Pareto archive with \(x \)

while (…)

return Pareto archive
Updating Pareto archive – dynamic nondominance problem

• Input parameter: new solution x
• x is added to Pareto archive if it is not covered by any solution in the archive
• All solutions dominated by x (if any) are removed from the archive
Dominated (rejected) solution
Non-dominated solution
Dominating solution
• The archive is organized as a list of solutions with no specific order
• New solution is compared until a dominating solution is found or all solutions are checked
• Especially poor behavior if new solutions are relatively good (few or none dominating solutions)
In this bi-objective case, the sorted list is as follows:

<table>
<thead>
<tr>
<th>Objective 1</th>
<th>Objective 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>5</td>
</tr>
</tbody>
</table>

The pair (14,...) is considered a dominating pair by both objectives.
• An index on each objective is kept
• The indexes are used to define sets U and L
• Reference solution is found with k-d tree and approximate nearest neighbor search

• Sets U and L are not built explicitly
• We start with solutions in set U that could dominate new solution
• Dynamic arrays (like `std::vector` in C++) and binary search instead of linked lists (`std::list` in C++) and a hash-table (`std::unordered_map` in C++) for indexes
• Some other methods of course
• Inconclusive results – advanced methods/data structures sometimes worse than simple list
• Rarely used
initialize Pareto archive

do

 for each solution y in Pareto archive

 add to Pareto archive all potentially nondominated solutions in neighborhood of y

while at least one new solution was added to Pareto archive

Return Pareto archive
Pareto local search
Pareto local search
Pareto local search
• Standalone PLS starting from random solutions is very inefficient since it spends a lot of time generating large numbers of solutions being still very far from the Pareto front.

• PLS, however, is used as a crucial component in some of the best methods for multiobjective knapsack, biobjective traveling salesperson problem (bTSP) and set covering problem.

• The general idea of such methods is to start PLS from a set of high quality solutions generated by some other methods, e.g. the powerful Lin-Kernighan heuristic for TSP.
The search towards and along Pareto front
The search towards and along Pareto front

- PLS is especially good in the search along Pareto front
- Achieves good synergy when combined with a method very good in search towards Pareto front
• On-line updated Pareto archive is a crucial element of PLS

• PLS generates large number of new candidate solutions in a very short time

• New solutions are usually relatively good, i.e. even if the new solution is dominated there are only relatively few dominating solutions
Main idea of our method
Main idea

\[z^* \cdot (S) \]

\[\hat{z}^* (S) \]
\[z^* \leq S \]

Main idea
Definition 13. ND-Tree data structure is a tree with the following properties:

1) With each node \(n \) is associated a set of solutions \(S(n) \).
2) Each leaf node contains a list \(L(n) \) of solutions and \(S(n) = L(n) \).
3) For each internal node \(n \), \(S(n) \) is the union of sets associated with all sons of \(n \).
4) Each node \(n \) stores an approximate ideal point \(\widehat{z}^*(S(n)) \) and approximate nadir point \(\widehat{z}_*(S(n)) \).
5) If \(n' \) is a son of \(n \), then \(\widehat{z}^*(S(n)) \leq \widehat{z}^*(S(n')) \) and \(\widehat{z}_*(S(n')) \leq \widehat{z}_*(S(n)) \).
Distance measure – Euclidean distance to center point

\[\hat{z}_*(S) \rightarrow \text{Center point} \]

\[\hat{z}_*(S) \]
ND-Tree algorithm

- Go through the tree using Properties 1-3 to skip some (many) branches. Stop if the new solution is dominated. Dominated solutions are removed.
- If the new solutions was not dominated add it to the tree. Starting from the root select closest node until leaf node is found.
- If the leaf contains too many solutions split it by simple clustering to subnodes containing close solutions.
Algorithm 2 Update

Parameter \uparrow: A Pareto archive $\hat{\mathcal{X}}_E$ organized as ND-Tree
Parameter \downarrow: New candidate solution x

\begin{align*}
\textbf{if } \hat{\mathcal{X}}_E = \emptyset \textbf{ then} \\
&\text{Create a leaf node } n \text{ with an empty list set } \mathcal{L}(n) \text{ and } \\
&\quad \text{use it as a root} \\
&\quad \mathcal{L}(n) \leftarrow \mathcal{L}(n) + x \\
\textbf{else} \\
&n \leftarrow \text{root node} \\
&\text{UpdateNode}(n \uparrow, x \downarrow) \\
&\textbf{if } x \text{ was not covered by any solution in } \hat{\mathcal{X}}_E \textbf{ then} \\
&\quad \text{Insert}(n \uparrow, x \downarrow)
\end{align*}
Algorithm 3 UpdateNode

Parameter \uparrow: A node n
Parameter \downarrow: New candidate solution x

Compare x to $\hat{z}^*(S(n))$ and $\hat{z}^*(S(n))$

if $\hat{z}^*(S(n)) \leq x$ then
 \quad - $|$ Property 1
 \quad STOP: x is rejected
else if $x \leq \hat{z}^*(S(n))$ then
 \quad - $|$ Property 2
 Remove n and its whole sub-tree
else if $\hat{z}^*(S(n)) \leq x$ or $x \leq \hat{z}^*(S(n))$ then
 \quad - $|$ Property 4
 if n is a leaf node then
 for each $y \in \mathcal{L}(n)$ do
 if $y \leq x$ then
 STOP: x is rejected
 else if $x < y$ then
 Remove y
 else
 for each Subnode n' of n do
 UpdateNode ($(n', \uparrow, x \downarrow)$
 if n' became empty then
 Remove n'
Algorithm 4 Insert

Parameter \uparrow: A node n
Parameter \downarrow: New candidate solution x

if n is a leaf node then
 $\mathcal{L}(n) \leftarrow \mathcal{L}(n) + x$
 UpdateIdealNadir ($n \uparrow, x \downarrow$)
 if Size of $\mathcal{L}(n)$ became larger than maximum size of a leaf set then
 Split ($n \uparrow$)
 else
 Find subnode n' of n being closest to x
 Insert($n' \uparrow, x \downarrow$)
Algorithm 5 Split

Parameter ♦: A node n

Find the solution $y \in \mathcal{L}(n)$ with the highest average Euclidean distance to all other solutions in $\mathcal{L}(n)$
Create a new subnode n' with an empty list set $\mathcal{L}(n')$
$\mathcal{L}(n') \leftarrow \mathcal{L}(n') + y$
UpdateIdealNadir $(n' \uparrow, y \downarrow)$
$\mathcal{L}(n) \leftarrow \mathcal{L}(n) - y$

while The required number of subnodes are not created do
 Find the solution $y \in \mathcal{L}(n)$ with the highest average Euclidean distance to all solutions in all subnodes of n
 Create a new subnode n' with an empty list set $\mathcal{L}(n')$
 $\mathcal{L}(n') \leftarrow \mathcal{L}(n') + y$
 UpdateIdealNadir $(n' \uparrow, y \downarrow)$
 $\mathcal{L}(n) \leftarrow \mathcal{L}(n) - y$

while $\mathcal{L}(n)$ is not empty do
 $y \leftarrow$ first solution in $\mathcal{L}(n)$
 Find subnode n' of n being closest to y
 $\mathcal{L}(n') \leftarrow \mathcal{L}(n') + y$
 UpdateIdealNadir $(n' \uparrow, y \downarrow)$
 $\mathcal{L}(n) \leftarrow \mathcal{L}(n) - y$
Algorithm 6 UpdateIdealNadir

Parameter \uparrow: A node n
Parameter \downarrow: New candidate solution x

Check in any component of x is lower than corresponding component in $\hat{z}^*(S(n))$ or greater than corresponding component in $\hat{z}_*(S(n))$ and update the points if necessary

if $\hat{z}^*(S(n))$ or $\hat{z}_*(S(n))$ have been changed then

if n is not a root then

 $np \leftarrow$ parent of n

 UpdateIdealNadir ($np \uparrow, x \downarrow$)
Artificial data sets

<table>
<thead>
<tr>
<th>#objectives</th>
<th>Quality</th>
<th>#non-dominated solutions</th>
<th>#objectives</th>
<th>Quality</th>
<th>#non-dominated solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>519</td>
<td>5</td>
<td>1</td>
<td>28944</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>713</td>
<td>5</td>
<td>2</td>
<td>42246</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1046</td>
<td>5</td>
<td>3</td>
<td>77477</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1400</td>
<td>5</td>
<td>4</td>
<td>96002</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2735</td>
<td>5</td>
<td>5</td>
<td>99975</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4588</td>
<td>6</td>
<td>1</td>
<td>45879</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6894</td>
<td>6</td>
<td>2</td>
<td>65195</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12230</td>
<td>6</td>
<td>3</td>
<td>96687</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>19095</td>
<td>6</td>
<td>4</td>
<td>99788</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>53813</td>
<td>6</td>
<td>5</td>
<td>100000</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>21680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>39952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>64664</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>98283</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2-objective data sets

The graph shows the CPU time in milliseconds (ms) for different quality levels (1 to 5) across various data sets. The x-axis represents the quality level, while the y-axis shows the CPU time in logarithmic scale.

- **List**
- **MFront**
- **MFront-II**
- **NDTree**
- **QuadTree**
- **Sorted List**

The data sets show varying performance across the quality levels, with some showing a steep increase in CPU time as the quality increases, while others remain relatively stable.
3-objective data sets

The graph illustrates the CPU time (in milliseconds) as a function of quality for different algorithms: List, MFront, MFront-II, NDTree, and QuadTree. The x-axis represents the quality level, ranging from 1 to 5, and the y-axis represents the CPU time, ranging from 100 to 100,000 milliseconds.
4-objective data sets
5-objective data sets

![Chart showing CPU time in milliseconds for different quality levels and data sets]

- List
- MFront
- MFront-II
- NDTTree
- QuadTree
6-objective data sets

The graph shows the CPU time (in ms) for different quality levels (1 to 5) for various data structures: List, MFront, MFront-II, NDTTree, and QuadTree. The x-axis represents the quality level, and the y-axis represents the CPU time. Each data structure has a different trend as the quality level increases.
Evolution with the number of objectives
Evolution with the number of solutions

The graph shows the CPU time (in milliseconds) on the y-axis against the number of solutions on the x-axis. The lines represent different algorithms:
- **List**
- **MFront**
- **MFront-II**
- **NDTree**
- **QuadTree**

As the number of solutions increases, the CPU time for all algorithms grows, with **QuadTree** having the lowest CPU time and **List** having the highest.
Evolution with the number of solutions ND-Tree only

CPU [ms]

Number of solutions

- NDTree
Observations

- ND-Tree performs the best for all test sets with three and more objectives.
- In some cases the differences to other methods are of two orders of magnitude and in some cases the difference to the second best method is of one order of magnitude.
- ND-Tree behaves also very predictably, its running time grows slowly with increasing number of objectives and increasing fraction of non-dominated solutions.
Observations

• For bi-objective instances sorted list is the best choice. In this case, M-Front and M-Front-II also behave very well since they become very similar to sorted list
• Simple list obtains its best performances for data sets with many dominated solutions
• Quad-tree performs very bad for data sets with many dominated solutions, e.g. on biobjective instances where it is worst in all cases
• The performance of both M-Front and M-Front-II deteriorates with increasing number of objectives
Sensitivity to parameters

CPU [ms]

Number of sons

- 5
- 10
- 15
- 20
- 50
- 100
- 200
- 1
<table>
<thead>
<tr>
<th>#objectives</th>
<th>Size</th>
<th></th>
<th>NDP</th>
<th></th>
<th>CPU [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>List</td>
<td>ND-Tree</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>32842</td>
<td>24.26</td>
<td>24.82</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>94343</td>
<td>3517.52</td>
<td>33.26</td>
<td>106</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>84013</td>
<td>1299.30</td>
<td>18.81</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>359581</td>
<td>20130.35</td>
<td>282.14</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>49341</td>
<td>257.93</td>
<td>12.09</td>
<td>21</td>
</tr>
</tbody>
</table>
Test sets generated by PLS
Conclusions

• ND-Tree should be a method of choice for storing and updating a Pareto archive in the case of three and more objectives problems
• For bi-objective instances sorter list is the best choice
• Many objective PLS became feasible

• http://arxiv.org/abs/1603.04798