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Motivation I – house pricing

Assess the selling price of a house based on its attributes.



Motivation I – house pricing

Den Bosch data set
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●
●

●

●

●●

●

● ● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

200 400 600 800

20
0

30
0

40
0

50
0

60
0

70
0

80
0

area

pr
ic

e



Motivation I – house pricing

Fitting linear function
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Motivation I – house pricing

Fitting isotonic1 function
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Motivation II – predicting good probabilities

Predictions of SVM classifier (german credit)
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Motivation II – predicting good probabilities

Fitting isotonic function to the labels [Zadrozny & Elkan, 2002]
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Motivation II – predicting good probabilities
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Isotonic regression

Definition
Fit an isotonic (monotonically increasing) function to the data.

Extensively studied in statistics [Ayer et al., 55; Brunk, 55;
Robertson et al., 98].

Numerous applications:
Biology, medicine, psychology, etc.
Multicriteria decision support.
Hypothesis tests under order constraints.
Multidimensional scaling.
Machine learning: probability calibration, ROC analysis.



Isotonic regression



Isotonic regression

Definition
Given data {(xt , yt)}Tt=1 ⊂ R× R, find isotonic (nondecreasing)
f ∗ : R→ R, which minimizes squared error over the labels:

min
f

:
T∑

t=1
(yt − f (xt))2,

subject to : xt ≥ xq =⇒ f (xt) ≥ f (xq), q, t ∈ {1, . . . ,T}.

The optimal solution f ∗ is called isotonic regression function.

What only matters are values f (xt), t = 1, . . . ,T .



Isotonic regression example

(source: scikit-learn.org)



Properties of isotonic regression

Depends on instances (x) only through their order relation.
Only defined at points {x1, . . . , xT}.

Often extended to R by linear interpolation.
Piecewise constants (splits the data into level sets).
Self-averaging property: the value of f ∗ in a given level set
equals the average of labels in that level set. For any v :

v = 1
|Sv |

∑
t∈Sv

yt where Sv = {t : f ∗(xt) = v}.

If yt ∈ [a, b] for all t, then f ∗(xt) ∈ [a, b] for all t.



Isotonic regression gives calibrated probabilities

Definition
Let y ∈ {0, 1}. A probability estimator p̂ of y is calibrated if

E[y |p̂ = v ] = v

Fact
For binary labels, isotonic regression f ∗ is a calibrated probability
estimator on the data set.

Proof: Let Sv = {t : f ∗(xt) = v}. By self-averaging:

E[y |f ∗(x) = v ] = 1
|Sv |

∑
t∈Sv

yt = v .



Isotonic regression gives calibrated probabilities

Definition
Let y ∈ {0, 1}. A probability estimator p̂ of y is calibrated if

E[y |p̂ = v ] = v

Fact
For binary labels, isotonic regression f ∗ is a calibrated probability
estimator on the data set.

Proof: Let Sv = {t : f ∗(xt) = v}. By self-averaging:

E[y |f ∗(x) = v ] = 1
|Sv |

∑
t∈Sv

yt = v .



Pool Adjacent Violators Algorithm (PAVA)

Iterative merging of of data points into blocks until no
violators of isotonic constraints exist.
The values assigned to each block is the average over labels in
this block.
The final assignments to blocks corresponds to the level sets
of isotonic regression.
Works in linear O(T ) time, but requires the data to be sorted.



PAVA: example

x 7 −1 −2 9 2 0 6 3 −3 5 −3 7 −5
y 1 0.4 0.2 0.7 0.7 0.6 0.8 0.2 0.3 0.6 0.4 1 0
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PAVA: example

Step 1: Sort the data in the increasing order of x .

x 7 −1 −2 9 2 0 6 3 −3 5 −3 7 −5
y 1 0.4 0.2 0.7 0.7 0.6 0.8 0.2 0.3 0.6 0.4 1 0

⇓ ⇓ ⇓

x −5 −3 −3 −2 −1 0 2 3 5 6 7 7 9
y 0 0.4 0.3 0.2 0.4 0.6 0.7 0.2 0.6 0.8 1 1 0.7



PAVA: example

Step 2: Split the data into blocks B1, . . . ,Br , such that points
with the same xt fall into the same block.

Assign value fi to each block (i = 1, . . . , r) which is the average of
labels in this block.

x −5 −3 −3 −2 −1 0 2 3 5 6 7 7 9
y 0 0.4 0.3 0.2 0.4 0.6 0.7 0.2 0.6 0.8 1 1 0.7

⇓ ⇓ ⇓

block B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

data {1} {2, 3} {4} {5} {6} {7} {8} {9} {10} {11, 12} {13}
fi 0 0.35 0.2 0.4 0.6 0.7 0.2 0.6 0.8 1 0.7



PAVA: example
Step 3: While there exists a violator, i.e. a pair of blocks Bi ,Bi+1
such that fi > fi+1:

Merge Bi and Bi+1 and assign a weighted average:

fi = |Bi |fi + |Bi+1|fi+1
|Bi |+ |Bi+1|

.

block B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

data {1} {2, 3} {4} {5} {6} {7} {8} {9} {10} {11, 12} {13}
fi 0 0.35 0.2 0.4 0.6 0.7 0.2 0.6 0.8 1 0.7

⇓ ⇓ ⇓

block B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

data {1} {2, 3, 4} {5} {6} {7} {8} {9} {10} {11, 12} {13}
fi 0 0.3 0.4 0.6 0.7 0.2 0.6 0.8 1 0.7



PAVA: example
Step 3: While there exists a violator, i.e. a pair of blocks Bi ,Bi+1
such that fi > fi+1:

Merge Bi and Bi+1 and assign a weighted average:

fi = |Bi |fi + |Bi+1|fi+1
|Bi |+ |Bi+1|

.

block B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

data {1} {2, 3, 4} {5} {6} {7} {8} {9} {10} {11, 12} {13}
fi 0 0.3 0.4 0.6 0.7 0.2 0.6 0.8 1 0.7

⇓ ⇓ ⇓

block B1 B2 B3 B4 B5 B6 B7 B8 B9

data {1} {2, 3, 4} {5} {6} {7, 8} {9} {10} {11, 12} {13}
fi 0 0.3 0.4 0.6 0.45 0.6 0.8 1 0.7



PAVA: example
Step 3: While there exists a violator, i.e. a pair of blocks Bi ,Bi+1
such that fi > fi+1:

Merge Bi and Bi+1 and assign a weighted average:

fi = |Bi |fi + |Bi+1|fi+1
|Bi |+ |Bi+1|

.

block B1 B2 B3 B4 B5 B6 B7 B8 B9

data {1} {2, 3, 4} {5} {6} {7, 8} {9} {10} {11, 12} {13}
fi 0 0.3 0.4 0.6 0.45 0.6 0.8 1 0.7

⇓ ⇓ ⇓

block B1 B2 B3 B4 B5 B6 B7 B8

data {1} {2, 3, 4} {5} {6, 7, 8} {9} {10} {11, 12} {13}
fi 0 0.3 0.4 0.5 0.6 0.8 1 0.7



PAVA: example
Step 3: While there exists a violator, i.e. a pair of blocks Bi ,Bi+1
such that fi > fi+1:

Merge Bi and Bi+1 and assign a weighted average:

fi = |Bi |fi + |Bi+1|fi+1
|Bi |+ |Bi+1|

.

block B1 B2 B3 B4 B5 B6 B7 B8

data {1} {2, 3, 4} {5} {6, 7, 8} {9} {10} {11, 12} {13}
fi 0 0.3 0.4 0.5 0.6 0.8 1 0.7

⇓ ⇓ ⇓

block B1 B2 B3 B4 B5 B6 B7

data {1} {2, 3, 4} {5} {6, 7, 8} {9} {10} {11, 12, 13}
fi 0 0.3 0.4 0.5 0.6 0.8 0.9

No more violators – finished.



PAVA: example

Reading out the solution.

block B1 B2 B3 B4 B5 B6 B7

data {1} {2, 3, 4} {5} {6, 7, 8} {9} {10} {11, 12, 13}
fi 0 0.3 0.4 0.5 0.6 0.8 0.9

⇓ ⇓ ⇓

x −5 −3 −3 −2 −1 0 2 3 5 6 7 7 9
y 0 0.4 0.3 0.2 0.4 0.6 0.7 0.2 0.6 0.8 1 1 0.7
f ∗ 0 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.6 0.8 0.9 0.9 0.9



PAVA: example

x −5 −3 −3 −2 −1 0 2 3 5 6 7 7 9
y 0 0.4 0.3 0.2 0.4 0.6 0.7 0.2 0.6 0.8 1 1 0.7
f ∗ 0 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.6 0.8 0.9 0.9 0.9
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Generalized isotonic regression

Definition
Given data {(xt , yt)}Tt=1 ⊂ R× R, find isotonic f ∗ : R→ R which
minimizes:

min
isotonic f

T∑
t=1

∆(yt , f (xt)).

Squared loss (yt − f (xt))2 replaced with general loss ∆(yt , f (xt)).

Theorem [Robertson et al., 1998]

All loss functions of the form:

∆(y , z) = Ψ(y)−Ψ(z)−Ψ′(z)(y − z)

for some strictly convex Ψ result in the same isotonic regression
function f ∗.



Generalized isotonic regression

Definition
Given data {(xt , yt)}Tt=1 ⊂ R× R, find isotonic f ∗ : R→ R which
minimizes:

min
isotonic f

T∑
t=1

∆(yt , f (xt)).

Squared loss (yt − f (xt))2 replaced with general loss ∆(yt , f (xt)).

Theorem [Robertson et al., 1998]

All loss functions of the form:

∆(y , z) = Ψ(y)−Ψ(z)−Ψ′(z)(y − z)

for some strictly convex Ψ result in the same isotonic regression
function f ∗.



Generalized isotonic regression – examples

∆(y , z) = Ψ(y)−Ψ(z)−Ψ′(z)(y − z)

Squared function Ψ(y) = y2:

∆(y , z) = y2 − z2 − 2f (y − z) = (y − z)2 (squared loss).

Entropy Ψ(y) = −y log y − (1− y) log(1− y), y ∈ [0, 1]

∆(y , z) = − y log z − (1− y) log(1− z) (cross-entropy).

Negative logarithm Ψ(y) = − log y , y > 0

∆(y , z) = y
z − log y

z (Itakura-Saito distance / Burg entropy).
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Online learning framework

A theoretical framework for the analysis of online algorithms.

Learning process by its very nature is incremental.
Avoids stochastic (e.g., i.i.d.) assumptions on the data
sequence, designs algorithms which work well for any data.
Meaningful performance guarantees based on observed
quantities: regret bounds.



Online learning framework

learner (strategy)
ft : X → Y

prediction
ŷt = ft(xt)

suffered loss
`(yt , ŷt)

new instance
(xt , ?) feedback:

yt

t → t + 1



Online learning framework

Set of strategies (actions) F ; known loss function `.

Learner starts with some initial strategy (action) f1.
For t = 1, 2, . . .:

1 Learner observes instance xt .
2 Learner predicts with ŷt = ft(xt).
3 The environment reveals outcome yt .
4 Learner suffers loss `(yt , ŷt).
5 Learner updates its strategy ft → ft+1.



Online learning framework

The goal of the learner is to be close to the best f in hindsight.

Cumulative loss of the learner:

L̂T =
T∑

t=1
`(yt , ŷt).

Cumulative loss of the best strategy f in hindsight:

L∗T = min
f ∈F

T∑
t=1

`(yt , f (xt)).

Regret of the learner:

regretT = L̂T − L∗T .

The goal is to minimize regret over all possible data sequences.
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Online isotonic regression
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ŷ5

y5
loss = (ŷ5 − y5)2
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loss = (ŷ1 − y1)2



Online isotonic regression

X

Y

x1 x2 x3 x4 x5 x6 x7 x8
0

1

x5

ŷ5
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loss = (ŷ5 − y5)2

x1

ŷ1
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Online isotonic regression

The protocol
Given: x1 < x2 < . . . < xT .
At trial t = 1, . . . ,T :

Environment chooses a yet unlabeled point xit .
Learner predicts ŷit ∈ [0, 1].
Environment reveals label yit ∈ [0, 1].
Learner suffers squared loss (yit − ŷit )2.

Strategies = isotonic functions:

F = {f : f (x1) ≤ f (x2) ≤ . . . ≤ f (xT )}

regretT =
T∑

t=1
(yit − ŷit )2 − min

f ∈F

T∑
t=1

(yit − f (xit ))2
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Online isotonic regression

F = {f : f (x1) ≤ f (x2) ≤ . . . ≤ f (xT )}

regretT =
T∑

t=1
(yit − ŷit )2 − min

f ∈F

T∑
t=1

(yit − f (xit ))2

Cumulative loss of the learner should not be much larger than the
loss of (optimal) isotonic regression function in hindsight.

Only the order x1 < . . . < xT matters, not the values.



The adversary is too powerful!

Every algorithm will have Ω(T ) regret
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ŷ2

y2

x2

loss ≥ 1/4

x3

ŷ1
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Fixed design

Data x1, . . . , xT is known in advance to the learner

We will show that in such model, efficient online algorithms exist.

K., Koolen, Malek: Online Isotonic Regression. Proc. of
Conference on Learning Theory (COLT), pp. 1165–1189, 2016.



Off-the-shelf online algorithms

Algorithm General bound Bound for online IR

Stochastic Gradient Descent G2D2
√

T T
Exponentiated Gradient G∞D1

√
T log d

√
T log T

Follow the Leader G2D2d log T T 2 log T
Exponential Weights d log T T log T

These bounds are tight (up to logarithmic factor).



Exponential Weights (Bayes) with uniform prior

Let f = (f1, . . . , fT ) denote values of f at (x1, . . . , xT ).

π(f ) = const, for all f : f1 ≤ . . . ≤ fT ,

P(f |yi1 , . . . , yit ) ∝ π(f )e−
1
2 loss1...t (f ),

ŷit+1 =
∫

fit+1P(f |yi1 , . . . , yit )df︸ ︷︷ ︸
= posterior mean

.
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Exponential Weights with uniform prior does not learn
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Exponential Weights with uniform prior does not learn

posterior mean (t = 50)
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Exponential Weights with uniform prior does not learn
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The algorithm

Exponential Weights on a covering net

FK =
{

f : ft = kt
K , k ∈ {0, 1, . . . ,K}, f1 ≤ . . . ≤ fT

}
,

π(f ) uniform on FK .

Efficient implementation by dynamic programming: O(Kt) at
trial t.
Speed-up to O(K ) if the data revealed in isotonic order.



Covering net

A finite set of isotonic functions on a discrete grid of y values.
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Performance of the algorithm

Regret bound

When K = Θ
(
T 1/3 log−1/3(T )

)
,

Regret = O
(
T 1/3 log2/3(T )

)

Matching lower bound Ω(T 1/3) (up to log factor).

Proof idea

Regret = Loss(alg)− min
f ∈FK

Loss(f )

+ min
f ∈FK

Loss(f )− min
isotonic f

Loss(f )
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When K = Θ
(
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)
,

Regret = O
(
T 1/3 log2/3(T )

)
Matching lower bound Ω(T 1/3) (up to log factor).

Proof idea

Regret = Loss(alg)− min
f ∈FK

Loss(f )︸ ︷︷ ︸
=2 log |FK |=O(K log T )

+ min
f ∈FK

Loss(f )− min
isotonic f

Loss(f )︸ ︷︷ ︸
= T

4K2
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Performance of the algorithm

posterior mean (t = 10)
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Performance of the algorithm
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Performance of the algorithm
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Performance of the algorithm
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Other loss functions

Cross-entropy loss

`(y , ŷ) = −y log ŷ − (1− y) log(1− ŷ)

The same bound O
(
T 1/3 log2/3(T )

)
.

Covering net FK obtained by non-uniform discretization.

Absolute loss

`(y , ŷ) = |y − ŷ |

O
(√

T log T
)

obtained by Exponentiated Gradient.
Matching lower bound Ω(

√
T ) (up to log factor).
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Random permutation model
A more realistic scenario for generating x1, . . . , xT which allows
data to be unknown in advance.

The data are chosen adversarially before the game begins, but then
are presented to the learner in a random order

Motivation: data gathering process is independent on the
underlying data generation mechanism.
Still very weak assumption.
Evaluation: regret averaged over all permutations of data:

Eσ [regretT ]

K., Koolen, Malek: Random Permutation Online Isotonic
Regression. Submitted, 2017.
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Leave-one-out loss

Definition
Given t labeled points {(xi , yi )}ti=1, for i = 1, . . . , t:

Take out i-th point and give remaining t − 1 points to the
learner as a training data.
Learner predict ŷi on xi and receives loss `(yi , ŷi ).

Evaluate the learner by `oot = 1
t
∑t

i=1 `(yi , ŷi )

No sequential structure in the definition.

Theorem
If `oot ≤ g(t) for all t, then Eσ [regretT ] ≤

∑T
t=1 g(t).
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Fixed design to random permutation conversion

Any algorithm for fixed-design can be used in the random
permutation setup by being re-run from the scratch in each trial.

We have shown that:

`oot ≤
1
t Eσ [fixed-design-regrett ]

We thus get an optimal algorithm (Exponential Weights on a grid)
with Õ(T−2/3) leave-one-out loss “for free”, but it is complicated.

Can we get simpler algorithms to work in this setup?



Follow the Leader (FTL) algorithm

Definition
Given past t − 1 data, compute the optimal (loss-minimizing)
function f ∗ and predict on new instance x according to f ∗(x).

FTL is undefined for isotonic regression.
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Foward Algorithm (FA)

Definition
Given past t − 1 data and a new instance x , take any guess
y ′ ∈ [0, 1] of the new label and predict according to the optimal
function f ∗ on the past data including the new point (x , y ′).

x −3 −1 0 2 3
y 0 0.2

y ′ = 1

0.7 1
f ∗(x)

0 0.2 0.85 0.85 1

Various popular prediction algorithms for IR fall into this
framework (including linear interpolation [Zadrozny & Elkan, 2002]
and many others [Vovk et al., 2015]).
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x −3 −1 0 2 3
y 0 0.2 y ′ = 1 0.7 1

f ∗(x) 0 0.2 0.85 0.85 1

Various popular prediction algorithms for IR fall into this
framework (including linear interpolation [Zadrozny & Elkan, 2002]
and many others [Vovk et al., 2015]).



Foward Algorithm (FA)

Two extreme FA: guess-1 and guess-0, denoted f ∗1 and f ∗0 .

Prediction of any FA is always between: f ∗0 (x) ≤ f ∗(x) ≤ f ∗1 (x).
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Performance of FA

Theorem
For squared loss, every forward algorithm has:

`oot = O

√ log t
t



The bound is suboptimal, but only a factor of O(t1/6) off.
For cross-entropy loss, the some bound holds but a more
careful choice of the guess must be made.
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Conclusions

Two models for online isotonic regression: fixed design and
random permutation.
Optimal algorithm in both models: Exponential Weights
(Bayes) on a grid.
In the random permutation model, a class of forward
algorithms with good bounds on the leave-one-out loss.

Open problem:
Extend any of these algorithms to the partial order case.
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