Online isotonic regression

Wojciech Kotłowski

Joint work with: Wouter Koolen (CWI, Amsterdam) Alan Malek (MIT)

Poznań University of Technology 06.06.2017

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

Assess the selling price of a house based on its attributes.

¹isotonic – non-decreasing, order-preserving

Can we turn score values into conditional probabilities P(y|x)?

Fitting isotonic function to the labels [Zadrozny & Elkan, 2002]

(generated by a script from scikit-learn.org)

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

Isotonic regression

Definition

Fit an isotonic (monotonically increasing) function to the data.

Extensively studied in statistics [Ayer et al., 55; Brunk, 55; Robertson et al., 98].

Numerous applications:

- Biology, medicine, psychology, etc.
- Multicriteria decision support.
- Hypothesis tests under order constraints.
- Multidimensional scaling.
- Machine learning: probability calibration, ROC analysis.

Isotonic regression

Isotonic regression

Definition

Given data $\{(x_t, y_t)\}_{t=1}^T \subset \mathbb{R} \times \mathbb{R}$, find isotonic (nondecreasing) $f^* \colon \mathbb{R} \to \mathbb{R}$, which minimizes squared error over the labels:

$$\begin{split} & \min_f: \quad \sum_{t=1}^T (y_t - f(x_t))^2, \\ & \text{subject to}: \quad x_t \geq x_q \implies f(x_t) \geq f(x_q), \quad q,t \in \{1,\dots,T\}. \end{split}$$

The optimal solution f^* is called isotonic regression function.

What only matters are values $f(x_t)$, t = 1, ..., T.

Isotonic regression example

(source: scikit-learn.org)

Properties of isotonic regression

- \blacksquare Depends on instances (x) only through their order relation.
- Only defined at points $\{x_1, \ldots, x_T\}$.
 - Often extended to \mathbb{R} by linear interpolation.
- Piecewise constants (splits the data into level sets).
- Self-averaging property: the value of f^* in a given level set equals the average of labels in that level set. For any v:

$$v = \frac{1}{|S_v|} \sum_{t \in S_v} y_t$$
 where $S_v = \{t : f^*(x_t) = v\}.$

■ If $y_t \in [a, b]$ for all t, then $f^*(x_t) \in [a, b]$ for all t.

Isotonic regression gives calibrated probabilities

Definition

Let $y \in \{0,1\}$. A probability estimator \widehat{p} of y is calibrated if

$$\mathbb{E}[y|\widehat{p}=v]=v$$

Isotonic regression gives calibrated probabilities

Definition

Let $y \in \{0,1\}$. A probability estimator \hat{p} of y is calibrated if

$$\mathbb{E}[y|\widehat{p}=v]=v$$

Fact

For binary labels, isotonic regression f^* is a calibrated probability estimator on the data set.

Proof: Let $S_v = \{t : f^*(x_t) = v\}$. By self-averaging:

$$\mathbb{E}[y|f^*(x) = v] = \frac{1}{|S_v|} \sum_{t \in S} y_t = v.$$

Pool Adjacent Violators Algorithm (PAVA)

- Iterative merging of of data points into blocks until no violators of isotonic constraints exist.
- The values assigned to each block is the average over labels in this block.
- The final assignments to blocks corresponds to the level sets of isotonic regression.
- Works in linear O(T) time, but requires the data to be sorted.

Step 1: Sort the data in the increasing order of x.

X	7	-1	-2	9	2	0	6	3	-3	5	-3	7	-5
y	1	0.4	0.2	0.7	0.7	0.6	8.0	0.2	0.3	0.6	0.4	1	0
					$\downarrow \downarrow$	\Downarrow	$\downarrow \downarrow$						
					•	•	,						
x	-5	-3	-3	-2	-1	0	2	3	5	6	7	7	9
у	0	0.4	0.3	0.2	0.4	0.6	0.7	0.2	0.6	0.8	1	1	0.7

Step 2: Split the data into blocks B_1, \ldots, B_r , such that points with the same x_t fall into the same block.

Assign value f_i to each block (i = 1, ..., r) which is the average of labels in this block.

block	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}
data	{1}	$\{2, 3\}$	{4 }	{5}	{6 }	{7}	{8}	{9}	$\{10\}$	B_{10} {11, 12}	$\{13\}$
f_i	0	0.35	0.2	0.4	0.6	0.7	0.2	0.6	0.8	1	0.7

Step 3: While there exists a violator, i.e. a pair of blocks B_i , B_{i+1} such that $f_i > f_{i+1}$:

■ Merge B_i and B_{i+1} and assign a weighted average:

$$f_i = \frac{|B_i|f_i + |B_{i+1}|f_{i+1}}{|B_i| + |B_{i+1}|}.$$

block	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10} {11, 12}	B_{11}
data	{1}	$\{2,3\}$	{4 }	$\{5\}$	{6 }	{7 }	{8}	{9}	$\{10\}$	$\{11, 12\}$	$\{13\}$
f_i	0	0.35	0.2	0.4	0.6	0.7	0.2	0.6	8.0	1	0.7

$$\Downarrow \qquad \Downarrow \qquad \Downarrow$$

									B_9	
data	{1}	$\{2, 3, 4\}$	{5 }	{6}	{7 }	{8}	{9}	{10}	{11, 12} 1	$\{13\}$
f_i	0	0.3	0.4	0.6	0.7	0.2	0.6	8.0	1	0.7

Step 3: While there exists a violator, i.e. a pair of blocks B_i , B_{i+1} such that $f_i > f_{i+1}$:

■ Merge B_i and B_{i+1} and assign a weighted average:

$$f_i = \frac{|B_i|f_i + |B_{i+1}|f_{i+1}}{|B_i| + |B_{i+1}|}.$$

block	B_1	B_2	B_3	B_4	B_5	B_6	B ₇	B ₈	B_9	B_{10}
data	{1}	$\{2, 3, 4\}$	{5}	{6}	{7 }	{8}	$\{9\}$	$\{10\}$	{11, 12} 1	$\{13\}$
f_i	0	0.3	0.4	0.6	0.7	0.2	0.6	8.0	1	0.7

$$\downarrow \qquad \downarrow \qquad \downarrow$$

block	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9
data	{1}	$\{2,3,4\}$	$\{5\}$	{6}	$\{7, 8\}$	{9}	{10}	$\{11, 12\}$	$\{13\}$
f_i	0	B_2 {2, 3, 4} 0.3	0.4	0.6	0.45	0.6	0.8	1	0.7

Step 3: While there exists a violator, i.e. a pair of blocks B_i , B_{i+1} such that $f_i > f_{i+1}$:

■ Merge B_i and B_{i+1} and assign a weighted average:

$$f_i = \frac{|B_i|f_i + |B_{i+1}|f_{i+1}}{|B_i| + |B_{i+1}|}.$$

block	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9
data	{1}	$\{2, 3, 4\}$	{5 }	{6 }	$\{7, 8\}$	{9}	{10}	$\{11, 12\}$	$\{13\}$
f_i	0	0.3	0.4	0.6	0.45	0.6	8.0	B ₈ {11, 12}	0.7

$$\Downarrow \qquad \Downarrow \qquad \Downarrow$$

block	B_1	B ₂	<i>B</i> ₃	B_4	B_5	B_6	B ₇	B ₈
data	{1}	$\{2, 3, 4\}$	{5 }	$\{6, 7, 8\}$	{9}	{10}	$\{11, 12\}$	{13}
f_i	0	B_2 {2,3,4} 0.3	0.4	0.5	0.6	0.8	1	0.7

Step 3: While there exists a violator, i.e. a pair of blocks B_i , B_{i+1} such that $f_i > f_{i+1}$:

■ Merge B_i and B_{i+1} and assign a weighted average:

$$f_i = \frac{|B_i|f_i + |B_{i+1}|f_{i+1}}{|B_i| + |B_{i+1}|}.$$

block	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8
data	{1}	$\{2, 3, 4\}$	{5 }	$\{6, 7, 8\}$	{9}	{10}	$\{11, 12\}$	{13}
f_i	0	B_2 {2, 3, 4} 0.3	0.4	0.5	0.6	8.0	1	0.7
			\Downarrow					
block	κ <i>B</i> ₁	<i>B</i> ₂	B ₃	B ₄	B ₅	B_6	B ₇	
data	[1]	{2,3,4}	{5}	$\{6, 7, 8\}$	{9}	{10}	{11, 12,	13}
f_i	0	B_2 {2,3,4}	0.4	0.5	0.6	0.8	0.9	

No more violators – finished.

Reading out the solution.

block
$$\begin{vmatrix} B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 \\ \text{data} & \{1\} & \{2,3,4\} & \{5\} & \{6,7,8\} & \{9\} & \{10\} & \{11,12,13\} \\ f_i & 0 & 0.3 & 0.4 & 0.5 & 0.6 & 0.8 & 0.9 \end{vmatrix}$$

$$\qquad \qquad \downarrow \qquad \qquad \downarrow$$

X	-5	-3	-3	-2	-1	0	2	3	5	6	7	7	9
У	0	0.4	0.3	0.2	0.4	0.6	0.7	0.2	0.6	8.0	1	1	0.7
f*	0	0.3	0.3	0.3	0.4	0.5	0.5	0.5	0.6	8.0	0.9	0.9	0.9

X	-5	-3	-3	-2	-1	0	2	3	5	6	7	7	9
у	0	0.4	0.3	0.2	0.4	0.6	0.7	0.2	0.6	8.0	1	1	0.7
f^*	0	0.3	0.3	0.3	0.4	0.5	0.5	0.5	0.6	8.0	0.9	0.9	0.9

Generalized isotonic regression

Definition

Given data $\{(x_t, y_t)\}_{t=1}^T \subset \mathbb{R} \times \mathbb{R}$, find isotonic $f^* \colon \mathbb{R} \to \mathbb{R}$ which minimizes: $\min_{\text{isotonic } f} \sum_{t=1}^T \Delta(y_t, f(x_t)).$

Squared loss $(y_t - f(x_t))^2$ replaced with general loss $\Delta(y_t, f(x_t))$.

Generalized isotonic regression

Definition

Given data $\{(x_t, y_t)\}_{t=1}^T \subset \mathbb{R} \times \mathbb{R}$, find isotonic $f^* \colon \mathbb{R} \to \mathbb{R}$ which minimizes: $\min_{\text{isotonic } f} \sum_{t=1}^T \Delta(y_t, f(x_t)).$

Squared loss $(y_t - f(x_t))^2$ replaced with general loss $\Delta(y_t, f(x_t))$.

Theorem [Robertson et al., 1998]

All loss functions of the form:

$$\Delta(y,z) = \Psi(y) - \Psi(z) - \Psi'(z)(y-z)$$

for some strictly convex Ψ result in the same isotonic regression function f^* .

Generalized isotonic regression – examples

$$\Delta(y,z) = \Psi(y) - \Psi(z) - \Psi'(z)(y-z)$$

Squared function $\Psi(y) = y^2$:

$$\Delta(y,z) = y^2 - z^2 - 2f(y-z) = (y-z)^2$$
 (squared loss).

Entropy
$$\Psi(y) = -y \log y - (1 - y) \log(1 - y), y \in [0, 1]$$

$$\Delta(y,z) = -y \log z - (1-y) \log(1-z)$$
 (cross-entropy).

Negative logarithm $\Psi(y) = -\log y$, y > 0

$$\Delta(y,z) = \frac{y}{z} - \log \frac{y}{z}$$
 (Itakura-Saito distance / Burg entropy).

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

Online learning framework

A theoretical framework for the analysis of online algorithms.

- Learning process by its very nature is incremental.
- Avoids stochastic (e.g., i.i.d.) assumptions on the data sequence, designs algorithms which work well for any data.
- Meaningful performance guarantees based on observed quantities: regret bounds.

Online learning framework

Online learning framework

Set of strategies (actions) \mathcal{F} ; known loss function ℓ .

Learner starts with some initial strategy (action) f_1 .

For
$$t = 1, 2, ...$$
:

- 1 Learner observes instance x_t .
- 2 Learner predicts with $\hat{y}_t = f_t(x_t)$.
- **3** The environment reveals outcome y_t .
- 4 Learner suffers loss $\ell(y_t, \hat{y}_t)$.
- **5** Learner updates its strategy $f_t o f_{t+1}$.

Online learning framework

The goal of the learner is to be close to the best f in hindsight.

Cumulative loss of the learner:

$$\widehat{L}_T = \sum_{t=1}^T \ell(y_t, \widehat{y}_t).$$

Cumulative loss of the best strategy f in hindsight:

$$L_T^* = \min_{f \in \mathcal{F}} \sum_{t=1}^T \ell(y_t, f(x_t)).$$

Regret of the learner:

$$\operatorname{regret}_{T} = \widehat{L}_{T} - L_{T}^{*}.$$

The goal is to minimize regret over all possible data sequences.

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

The protocol

Given: $x_1 < x_2 < ... < x_T$.

At trial $t = 1, \ldots, T$:

- Environment chooses a yet unlabeled point x_{i_t} .
- Learner predicts $\hat{y}_{i_t} \in [0, 1]$.
- Environment reveals label $y_{i_t} \in [0, 1]$.
- Learner suffers squared loss $(y_{i_t} \hat{y}_{i_t})^2$.

The protocol

Given: $x_1 < x_2 < ... < x_T$.

At trial $t = 1, \ldots, T$:

- Environment chooses a yet unlabeled point x_{i_t} .
- Learner predicts $\hat{y}_{i_t} \in [0, 1]$.
- Environment reveals label $y_{i_t} \in [0, 1]$.
- Learner suffers squared loss $(y_{i_t} \hat{y}_{i_t})^2$.

Strategies = isotonic functions:

$$\mathcal{F} = \{ f : f(x_1) \le f(x_2) \le \ldots \le f(x_T) \}$$

The protocol

Given: $x_1 < x_2 < ... < x_T$.

At trial $t = 1, \ldots, T$:

- Environment chooses a yet unlabeled point x_{i_t} .
- Learner predicts $\hat{y}_{i_t} \in [0, 1]$.
- Environment reveals label $y_{i_t} \in [0, 1]$.
- Learner suffers squared loss $(y_{i_t} \hat{y}_{i_t})^2$.

Strategies = isotonic functions:

$$\mathcal{F} = \{ f : f(x_1) \le f(x_2) \le \dots \le f(x_T) \}$$

$$\mathsf{regret}_T = \sum_{t=1}^T (y_{i_t} - \widehat{y}_{i_t})^2 - \min_{f \in \mathcal{F}} \sum_{t=1}^T (y_{i_t} - f(x_{i_t}))^2$$

$$\mathcal{F} = \{ f : f(x_1) \le f(x_2) \le \dots \le f(x_T) \}$$

$$\mathsf{regret}_T = \sum_{t=1}^T (y_{i_t} - \widehat{y}_{i_t})^2 - \min_{f \in \mathcal{F}} \sum_{t=1}^T (y_{i_t} - f(x_{i_t}))^2$$

Cumulative loss of the learner should not be much larger than the loss of (optimal) isotonic regression function in hindsight.

Only the order $x_1 < \ldots < x_T$ matters, not the values.

Algorithms' loss $\geq \frac{1}{4}$ per trial, loss of best isotonic function = 0.

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

Fixed design

Data x_1, \ldots, x_T is known in advance to the learner

We will show that in such model, efficient online algorithms exist.

K., Koolen, Malek: *Online Isotonic Regression*. Proc. of Conference on Learning Theory (COLT), pp. 1165–1189, 2016.

Off-the-shelf online algorithms

Algorithm	General bound	Bound for online IR
Stochastic Gradient Descent	$G_2D_2\sqrt{T}$	T
Exponentiated Gradient	$G_{\infty}D_1\sqrt{T\log d}$	$\sqrt{T \log T}$
Follow the Leader	$G_2D_2d\log T$	$T^2 \log T$
Exponential Weights	d log T	$T \log T$

These bounds are tight (up to logarithmic factor).

Exponential Weights (Bayes) with uniform prior

Let $\mathbf{f} = (f_1, \dots, f_T)$ denote values of f at (x_1, \dots, x_T) .

$$\pi(\boldsymbol{f}) = \text{const}, \quad \text{for all } \boldsymbol{f} \colon f_1 \le \ldots \le f_T,$$

$$P(\boldsymbol{f}|y_{i_1}, \ldots, y_{i_t}) \propto \pi(\boldsymbol{f})e^{-\frac{1}{2}\text{loss}_{1...t}(\boldsymbol{f})},$$

$$\widehat{y}_{i_{t+1}} = \underbrace{\int f_{i_{t+1}}P(\boldsymbol{f}|y_{i_1}, \ldots, y_{i_t})\mathrm{d}\boldsymbol{f}}_{= \text{posterior mean}}.$$

Exponential Weights with uniform prior does not learn

The algorithm

Exponential Weights on a covering net

$$\mathcal{F}_{\mathcal{K}} = \left\{ \mathbf{f} : f_t = \frac{k_t}{\mathcal{K}}, k \in \{0, 1, \dots, \mathcal{K}\}, f_1 \leq \dots \leq f_T \right\},$$
 $\pi(\mathbf{f}) \text{ uniform on } \mathcal{F}_{\mathcal{K}}.$

- Efficient implementation by dynamic programming: O(Kt) at trial t.
- Speed-up to O(K) if the data revealed in isotonic order.

Regret bound

When
$$K=\Theta\left(T^{1/3}\log^{-1/3}(T)\right)$$
,
$$\mathsf{Regret}=O\left(T^{1/3}\log^{2/3}(T)\right)$$

Regret bound

When
$$K=\Theta\left(T^{1/3}\log^{-1/3}(T)\right)$$
,
$$\mathsf{Regret}=O\left(T^{1/3}\log^{2/3}(T)\right)$$

■ Matching lower bound $\Omega(T^{1/3})$ (up to log factor).

Regret bound

When
$$K=\Theta\left(T^{1/3}\log^{-1/3}(T)\right)$$
,
$${\sf Regret}=O\left(T^{1/3}\log^{2/3}(T)\right)$$

■ Matching lower bound $\Omega(T^{1/3})$ (up to log factor).

Proof idea

$$\begin{aligned} \mathsf{Regret} &= \mathsf{Loss}(\mathsf{alg}) - \min_{\boldsymbol{f} \in \mathcal{F}_K} \mathsf{Loss}(\boldsymbol{f}) \\ &+ \min_{\boldsymbol{f} \in \mathcal{F}_K} \mathsf{Loss}(\boldsymbol{f}) - \min_{\mathsf{isotonic}\ f} \mathsf{Loss}(f) \end{aligned}$$

Regret bound

When
$$K=\Theta\left(T^{1/3}\log^{-1/3}(T)\right)$$
,
$${\sf Regret}=O\left(T^{1/3}\log^{2/3}(T)\right)$$

■ Matching lower bound $\Omega(T^{1/3})$ (up to log factor).

Proof idea

Regret =
$$\underbrace{\mathsf{Loss}(\mathsf{alg}) - \min_{\boldsymbol{f} \in \mathcal{F}_K} \mathsf{Loss}(\boldsymbol{f})}_{=2 \log |\mathcal{F}_K| = O(K \log T)}$$

+ $\min_{\boldsymbol{f} \in \mathcal{F}_K} \mathsf{Loss}(\boldsymbol{f}) - \min_{\substack{\mathsf{isotonic } f \\ =\frac{T}{4K^2}}} \mathsf{Loss}(\boldsymbol{f})$

Other loss functions

Cross-entropy loss

$$\ell(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

- The same bound $O\left(T^{1/3}\log^{2/3}(T)\right)$.
- Covering net \mathcal{F}_K obtained by non-uniform discretization.

Other loss functions

Cross-entropy loss

$$\ell(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

- The same bound $O\left(T^{1/3}\log^{2/3}(T)\right)$.
- **Covering net** \mathcal{F}_K obtained by non-uniform discretization.

Absolute loss

$$\ell(y,\widehat{y}) = |y - \widehat{y}|$$

- $O(\sqrt{T \log T})$ obtained by Exponentiated Gradient.
- Matching lower bound $\Omega(\sqrt{T})$ (up to log factor).

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

Random permutation model

A more realistic scenario for generating x_1, \ldots, x_T which allows data to be unknown in advance.

Random permutation model

A more realistic scenario for generating x_1, \ldots, x_T which allows data to be unknown in advance.

The data are chosen adversarially before the game begins, but then are presented to the learner in a random order

- Motivation: data gathering process is independent on the underlying data generation mechanism.
- Still very weak assumption.
- Evaluation: regret averaged over all permutations of data:

 $\mathbb{E}_{\sigma}\left[\mathsf{regret}_{\mathcal{T}}\right]$

K., Koolen, Malek: Random Permutation Online Isotonic Regression. Submitted, 2017.

Leave-one-out loss

Definition

Given t labeled points $\{(x_i, y_i)\}_{i=1}^t$, for i = 1, ..., t:

- Take out *i*-th point and give remaining t-1 points to the learner as a training data.
- Learner predict \hat{y}_i on x_i and receives loss $\ell(y_i, \hat{y}_i)$.

Evaluate the learner by $\ell oo_t = \frac{1}{t} \sum_{i=1}^{t} \ell(y_i, \hat{y}_i)$

No sequential structure in the definition.

Leave-one-out loss

Definition

Given t labeled points $\{(x_i, y_i)\}_{i=1}^t$, for i = 1, ..., t:

- Take out *i*-th point and give remaining t-1 points to the learner as a training data.
- Learner predict \hat{y}_i on x_i and receives loss $\ell(y_i, \hat{y}_i)$.

Evaluate the learner by $\ell oo_t = \frac{1}{t} \sum_{i=1}^{t} \ell(y_i, \hat{y}_i)$

No sequential structure in the definition.

Theorem

If $loo_t \leq g(t)$ for all t, then $\mathbb{E}_{\sigma}[\mathsf{regret}_T] \leq \sum_{t=1}^T g(t)$.

Fixed design to random permutation conversion

Any algorithm for fixed-design can be used in the random permutation setup by being re-run from the scratch in each trial.

We have shown that:

$$\ell oo_t \leq \frac{1}{t} \mathbb{E}_{\sigma} [\mathsf{fixed\text{-}design\text{-}regret}_t]$$

We thus get an optimal algorithm (Exponential Weights on a grid) with $\widetilde{O}(T^{-2/3})$ leave-one-out loss "for free", but it is complicated.

Can we get simpler algorithms to work in this setup?

Follow the Leader (FTL) algorithm

Definition

Given past t-1 data, compute the optimal (loss-minimizing) function f^* and predict on new instance x according to $f^*(x)$.

Follow the Leader (FTL) algorithm

Definition

Given past t-1 data, compute the optimal (loss-minimizing) function f^* and predict on new instance x according to $f^*(x)$.

FTL is undefined for isotonic regression.

	-3		2	3
<i>y</i> f*(x)	0	0.2	0.7	1
$f^*(x)$	0	0.2	0.7	1

Follow the Leader (FTL) algorithm

Definition

Given past t-1 data, compute the optimal (loss-minimizing) function f^* and predict on new instance x according to $f^*(x)$.

FTL is undefined for isotonic regression.

X	-3	-1	0	2	3
<i>y</i> $f^*(x)$	0	0.2		0.7	1
$f^*(x)$	0	0.2	??	0.7	1

Definition

Given past t-1 data and a new instance x, take any guess $y' \in [0,1]$ of the new label and predict according to the optimal function f^* on the past data including the new point (x, y').

X	-3	-1	0	2	3
y	0	0.2		0.7	1
<i>y</i> <i>f</i> *(<i>x</i>)					

Definition

Given past t-1 data and a new instance x, take any guess $y' \in [0,1]$ of the new label and predict according to the optimal function f^* on the past data including the new point (x, y').

X	-3	-1	0	2	3
У	0	0.2	y'=1	0.7	1
$f^*(x)$			$0 \\ y' = 1$		

Definition

Given past t-1 data and a new instance x, take any guess $y' \in [0,1]$ of the new label and predict according to the optimal function f^* on the past data including the new point (x, y').

X	-3	-1	0	2	3
У	0	0.2	y' = 1 0.85	0.7	1
$f^*(x)$	0	0.2	0.85	0.85	1

Definition

Given past t-1 data and a new instance x, take any guess $y' \in [0,1]$ of the new label and predict according to the optimal function f^* on the past data including the new point (x, y').

X	-3	-1	0	2	3
У	0	0.2	y' = 1 0.85	0.7	1
$f^*(x)$	0	0.2	0.85	0.85	1

Various popular prediction algorithms for IR fall into this framework (including linear interpolation [Zadrozny & Elkan, 2002] and many others [Vovk et al., 2015]).

Two extreme FA: guess-1 and guess-0, denoted f_1^* and f_0^* .

Two extreme FA: guess-1 and guess-0, denoted f_1^* and f_0^* .

Two extreme FA: guess-1 and guess-0, denoted f_1^* and f_0^* .

Two extreme FA: guess-1 and guess-0, denoted f_1^* and f_0^* .

Performance of FA

Theorem

For squared loss, every forward algorithm has:

$$\ell oo_t = O\left(\sqrt{\frac{\log t}{t}}\right)$$

- The bound is suboptimal, but only a factor of $O(t^{1/6})$ off.
- For cross-entropy loss, the some bound holds but a more careful choice of the guess must be made.

Outline

- 1 Motivation
- 2 Isotonic regression
- 3 Online learning
- 4 Online isotonic regression
- 5 Fixed design online isotonic regression
- 6 Random permutation online isotonic regression
- 7 Conclusions

Conclusions

- Two models for online isotonic regression: fixed design and random permutation.
- Optimal algorithm in both models: Exponential Weights (Bayes) on a grid.
- In the random permutation model, a class of forward algorithms with good bounds on the leave-one-out loss.

Open problem:

Extend any of these algorithms to the partial order case.

Bibliography

Statistics

- M. Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and E. Silverman. An empirical distribution function for sampling with incomplete information. *Annals of Mathematical Statistics*, 26(4):641–647, 1955
- H. D. Brunk. Maximum likelihood estimates of monotone parameters. Annals of Mathematical Statistics, 26(4):607–616, 1955
- J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika*, 29(1):1–27, 1964
- R. E. Barlow and H. D. Brunk. The isotonic regression problem and its dual. *Journal of the American Statistical Association*, 67:140–147, 1972
- T. Robertson, F. T. Wright, and R. L. Dykstra. *Order Restricted Statistical Inference*. John Wiley & Sons, 1998
- Sara Van de Geer. Estimating a regression function. Annals of Statistics, 18:907–924, 1990
- Cun-Hui Zhang. Risk bounds in isotonic regression. The Annals of Statistics, 30(2):528–555, 2002
- Jan de Leeuw, Kurt Hornik, and Patrick Mair. Isotone optimization in R: Pool-adjacent-violators algorithm (PAVA) and active set methods. *Journal of Statistical Software*, 32:1–24, 2009

Bibliography

Machine Learning

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probability estimates. In KDD, pages 694–699, 2002

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learning. In *ICML*, volume 119, pages 625–632. ACM, 2005

Tom Fawcett and Alexandru Niculescu-Mizil. PAV and the ROC convex hull. Machine Learning, 68(1):97–106, 2007

Vladimir Vovk, Ivan Petej, and Valentina Fedorova. Large-scale probabilistic predictors with and without guarantees of validity. In *NIPS*, pages 892–900, 2015

Aditya Krishna Menon, Xiaoqian Jiang, Shankar Vembu, Charles Elkan, and Lucila Ohno-Machado. Predicting accurate probabilities with a ranking loss. In *ICML*, 2012

Rasmus Kyng, Anup Rao, and Sushant Sachdeva. Fast, provable algorithms for isotonic regression in all ℓ_P -norms. In *NIPS*, 2015

Adam Tauman Kalai and Ravi Sastry. The isotron algorithm: High-dimensional isotonic regression. In COLT, 2009

T. Moon, A. Smola, Y. Chang, and Z. Zheng. Intervalrank: Isotonic regression with listwise and pairwise constraint. In WSDM, pages 151–160. ACM, 2010

Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learning of generalized linear and single index models with isotonic regression. In *NIPS*, pages 927–935, 2011

Bibliography

Online isotonic regression

Alexander Rakhlin and Karthik Sridharan. Online nonparametric regression. In *COLT*, pages 1232–1264, 2014

Pierre Gaillard and Sébastien Gerchinovitz. A chaining algorithm for online nonparametric regression. In *COLT*, pages 764–796, 2015

Wojciech Kotłowski, Wouter M. Koolen, and Alan Malek. Online isotonic regression. In *COLT*, pages 1165–1189, 2016

Wojciech Kotłowski, Wouter M. Koolen, and Alan Malek. Random permutation online isotonic regression. submitted, 2017